An approximate dynamic programming approach to convex quadratic knapsack problems
نویسندگان
چکیده
Quadratic knapsack problem (QKP) has a central role in integer and combinatorial optimization, while efficient algorithms to general QKPs are currently very limited. We present an approximate dynamic programming (ADP) approach for solving convex QKPs where variables may take any integer value and all coefficients are real numbers. We approximate the function value using (a) continuous quadratic programming relaxation (CQPR), and (b) the integral parts of the solutions to CQPR. We propose a new heuristic which adaptively fixes the variables according to the solution of CQPR.We report computational results for QKPs with up to 200 integer variables. Our numerical results illustrate that the new heuristic produces high-quality solutions to large-scale QKPs fast and robustly. 2004 Elsevier Ltd. All rights reserved.
منابع مشابه
A dynamic programming approach for solving nonlinear knapsack problems
Nonlinear Knapsack Problems (NKP) are the alternative formulation for the multiple-choice knapsack problems. A powerful approach for solving NKP is dynamic programming which may obtain the global op-timal solution even in the case of discrete solution space for these problems. Despite the power of this solu-tion approach, it computationally performs very slowly when the solution space of the pr...
متن کاملA Method for Solving Convex Quadratic Programming Problems Based on Differential-algebraic equations
In this paper, a new model based on differential-algebraic equations(DAEs) for solving convex quadratic programming(CQP) problems is proposed. It is proved that the new approach is guaranteed to generate optimal solutions for this class of optimization problems. This paper also shows that the conventional interior point methods for solving (CQP) problems can be viewed as a special case of the n...
متن کاملA Recurrent Neural Network for Solving Strictly Convex Quadratic Programming Problems
In this paper we present an improved neural network to solve strictly convex quadratic programming(QP) problem. The proposed model is derived based on a piecewise equation correspond to optimality condition of convex (QP) problem and has a lower structure complexity respect to the other existing neural network model for solving such problems. In theoretical aspect, stability and global converge...
متن کاملQuadratic approximate dynamic programming for inputaffine systems
We consider the use of quadratic approximate value functions for stochastic control problems with inputaffine dynamics and convex stage cost and constraints. Evaluating the approximate dynamic programming policy in such cases requires the solution of an explicit convex optimization problem, such as a quadratic program, which can be carried out efficiently. We describe a simple and general metho...
متن کاملA numerical approach for optimal control model of the convex semi-infinite programming
In this paper, convex semi-infinite programming is converted to an optimal control model of neural networks and the optimal control model is solved by iterative dynamic programming method. In final, numerical examples are provided for illustration of the purposed method.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computers & OR
دوره 33 شماره
صفحات -
تاریخ انتشار 2006